

Pioneers in Wireless Testing & Certification

Prepared for:

ASC C63 Subcommittee 8

Piscataway, NJ April 21, 2009

HAC Testing Technology
Developments at 700 MHz

Prepared by:

PCTEST Engineering Lab

Introduction

- Why the interest in 700 MHz?
 - New Technology, in particular, LTE, plans to be deployed on this new portion of spectrum from various carriers
- What is LTE?
 - Long Term Evolution

Figure 16: Operator migration paths to LTE Source: Nokia Siemens Networks

Introduction

Revised 700 MHz Band Plan for Commercial Services

LOWER 700 MHz BAND (TV CHANNELS 52-59)

UPPER 700 MHz BAND (TV CHANNELS 60-69)

Source: FCC PSHSB Last Reviewed/Updated 9/5/2007

Introduction

- When will it affect HAC?
 - First phase of LTE for data use only
 - Next phase for voice operations (2010+??)
 - Directly relevant for hearing impaired
 - Phones will be able to hand-off from traditional technologies (i.e. CDMA, GSM, WCDMA) to LTE, seamlessly.
- Hearing impaired user experience will need to be addressed for <u>all air</u> <u>interfaces</u> where voice communication is utilized via commercial radio networks

HAC Testing

Key Components of a HAC RF Emissions Test:

1. System Validation

- Known reference (dipole)
- Checks for accuracy of field measurements made above phones (E-field and H-field)

2. Area scan

- (5cm x 5 cm) about the ear reference point of the phone
- Evaluation of all technology modes to determine worst-case field levels (FCC requirement to cover new technology complex characteristics)

HAC Testing: Challenges for 700 MHz

- Limitation of test equipment
 - Reference Dipoles (initial availability as of 2008)
 - Call Simulator equipment (not available, esp. for voice capability)
- Limitation of expertise

New technology → lack of test expertise

Issues with Current Reference Dipoles

Cannot use neighboring familiar 835 MHz Reference Dipoles

Need for dedicated 700 MHz Dipole

◆ Covers new 700 – 800 MHz Band

700 MHz Reference Targets (1 cm)

1 Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY4	V4.7 B71
DASY PP Version	SEMCAD	V1.8 B184
Phantom	HAC Test Arch	SD HAC P01 BA, #1070
Distance Dipole Top - Probe Center	10 mm	
Scan resolution	dx, $dy = 5$ mm	area = 20 x 220 mm
Frequency	750 MHz ± 1 MHz	
Forward power at dipole connector	20.0 dBm = 100mW	
Input power drift	< 0.05 dB	

2 Maximum Field values

Current: 1.0 cm distances

H-field 10 mm above dipole surface	condition	interpolated maximum
Maximum measured	100 mW forward power	0.440 A/m
Uncertainty for H-field measurement: 8.2% (k=2)		

E-field 10 mm above dipole surface	condition	Interpolated maximum
Maximum measured above high end-	100 mW forward power	163.3 V/m
Maximum measured above low end	100 mW forward power	101 F. VIm
Averaged maximum above arm	100 mW forward power	162.4 V/m

Uncertainty for E-field measurement: 12.8% (k=2)

Need 1.5 cm 700 MHz Reference Dipole Targets

In the next release of C63.19, **1.5 cm distance** will be standardized for reference dipoles, to better represent system verification at Wireless Device test distances.

700 MHz assessments for the new C63.19 release

HAC Dipole Sample Scan

HAC 700 MHz Dipole Results

- E-field at 15mm:
 - 101.0 V/m
- H-field at 15mm:
 - 0.2772 A/m
- Compare to field strengths at 10 mr
 - E-field: 162.4 V/m
 - H-field: 0.440 A/m

Conclusion

- Development in the "HAC Test System world" have started preparing for HAC in the LTE 700 MHz band since 2008.
- Some systems can now be validated for HAC RF Emissions Evaluation at 700 MHz bands
- Questions?